

Reliability Standards

Board of Trustees Meeting November 3, 2011 Herb Schrayshuen, Vice President Standards and Training

- Continent-wide Standards Program
 - Project 2007-07 Vegetation Management FAC-003-2
 - Reliability Standard Development Plan 2012-2014
- Regional Standards Programs
 - MOD-025-RFC-1: Reactive Power Capability
 - IRO-006-TRE-1: IROL and SOL Mitigation in the ERCOT Interconnection
 - PRC-006-SERC-1: Automatic Underfrequency Load Shedding (UFLS) Requirements
- CIP Implementation Plan Resolution

- FAC-003-2 Transmission Vegetation Management
- Foundational standard for vegetation management
- Requirements include several significant improvements relative to existing standard
- Revised definitions for:
 - Right-of-Way (ROW)
 - Vegetation inspection
- Includes a new definition for:
 - Minimum Vegetation Clearance Distance (MVCD)
- Approval 86.25% Quorum 87.17%

- Results-based additions:
 - Provides background, rationale, and guidelines to support implementation within standard
- Requirement improvements:
 - Expanded vegetation management to include all lands without regard to ownership
 - Subdivided requirement for inspections and communications of imminent threats for improved clarity
 - Retained obligation to report vegetation-related outages but moved out of requirements into compliance reporting
 - Added objective method for calculating vegetation clearances
 - Added time-bound vegetation inspection intervals

- Includes explicit requirements to manage vegetation:
 - Requires prevention of all vegetation encroachments inside the MVCD
- Uses Violation Risk Factors (VRFs) and Violation Severity Levels (VSLs) to focus work on lines posing greatest risk to reliability

- Uses objective method to define the MVCD which identifies the minimum flash-over distances but does not provide any margin
 - New standard obliges entities to maintain vegetation appropriately without using a one-size-fits-all approach
- Focuses on managing vegetation on ROWs that could lead to cascading outages, but not other outcomes of vegetation related outages beyond those that cause cascading, uncontrolled separation, and instability
 - SDT feels that the ERO's responsibility is limited to developing standards that prevent cascading, uncontrolled separation, and instability only

- Requirement for each Transmission Owner to complete 100 % of its annual vegetation work plan is not enforceable as written and also provides entities with reasons for not completing 100% of their work plan
 - New standard ensures that Transmission Owners are not penalized for a failure to complete their annual plan as long as the changes do not lead to any vegetation-related encroachments into the MVCD
- Requirement for vegetation management plan replaced with less detailed requirements and no obligation for document maintenance
 - New standard focuses on actual performance

- Moderate and High (rather than Severe) VSLs for sustained outages from fall-ins and blow-ins from within ROW "lower" expectations for prevention of these types of vegetation outages even on critical lines
 - VSLs linked to failure to comply with different aspects of management program – not all aspects of program are equal
- Continues to exclude all vegetation fall-ins and blow-ins from outside the ROW, the most significant contributor to vegetation caused sustained outages
 - Couldn't write requirement applicable to all Transmission Owners when utilities have limited rights to manage vegetation outside ROW

- Exemptions in footnotes call into question enforcement discretion
 - Provisions prevent Transmission Owners from having to develop burdensome self-reports of violations for conditions that were outside their control. Explicitly noting these concerns should not have any impact on enforcement discretion.

- Update Milestones:
 - July 2011 solicited suggestions for additional projects
 - August 2011 Standards Committee reviewed and prioritized projects
 - September 2011 posted draft plan for stakeholder comment
 - Received 15 sets of comments representing views from 63 people, 38 companies, and all 10 of the 10 industry segments.
 - October 2011 Standards Committee approved the 2012-2014 RSDP

- Standards Committee considered three separate aspects for prioritization (reliability, time sensitivity, and practicality), and tested a fourth (cost considerations).
 - This allowed the Standards Committee to consider each of the key drivers separately, as well as in aggregate, to determine how best to allocate resources.

- Standards Committee allocated the throughput capability to three areas:
 - Reliability 8 projects
 - Time-sensitive projects 3 projects
 - Practicality projects 2 projects

Highlights of RSDP

- Projects continuing/starting in 2012 address:
 - Protection systems and associated misoperations
 - Communications
 - Cyber security
 - Real-time operations
 - Frequency response
 - Definition of Bulk Electric System (BES)
- Process will continue to evaluate emerging issues: cold weather, GMD, ROW clearances, etc.
 - Plan is expected to be dynamic, and the Standards Committee may implement differently if needed to respond to emerging issues

- MOD-025-RFC-1 Verification and Data Reporting of Gen Gross and Net Reactive Power Capability
 - Provides planning entities with accurate generator gross and net reactive power capability modeling data
 - Requires Generator Owner to verify operating range of reactive power capability every five years
 - Requires Generator Owner to provide verification data to its Transmission Planner, Transmission Operator, Reliability Coordinator or Planning Coordinator
 - Developed to supplement MOD-025-1 continent-wide standard (under development)

- No need for regional standard since continent-wide MOD-025-1 under development
 - Reliability *First* fulfilling its obligation under MOD-025-1 (approved by board, not by FERC)
 - When continent-wide MOD-025 approved, ReliabilityFirst standard will be reviewed for duplicative requirements
 - Replacement of legacy documents required in Reliability*First*'s Bylaws
 - New standard addresses ambiguities, inconsistencies and deficiencies in legacy documents

- Attachment 1 Section 2.1 is too rigid; will hinder ability to obtain reactive power test results when plant conditions do not allow the real power to be at the level reported in MOD-024-RFC-01.
 - Reported capability equal to unit's continuous, sustainable output 24/7 without encountering equipment limits (may be different from unit's maximum capacity)

- IRO-006-TRE-1 IROL and SOL Mitigation in the ERCOT Interconnection
 - Provides enforceable requirements associated with existing ERCOT congestion management procedures
 - Requires Reliability Coordinator to have and implement procedures for identification and mitigation of exceedances of identified IROLs and SOLs unresolved by automatic actions of ERCOT Nodal market operations system
 - Addresses directive in FERC Order 693 paragraph 964:

"...Modify ... ERCOT procedures to ensure consistency with the standard form of the Reliability Standards including Requirements, Measures and Levels of Non-Compliance." PRC-006-SERC-1 - Automatic Underfrequency Load Shedding Requirements

- Identifies Planning Coordinator as entity responsible for developing UFLS schemes
- Adds requirements for Planning Coordinators not contained in continent-wide standard PRC-006-1:
 - Include SERC subregion as identified island required by PRC-006-1
 - Select/develop automatic UFLS scheme meeting specified criteria
 - Conduct simulations of UFLS schemes for load and generation imbalances of 13%, 22%, and 25%

AMERICAN ELECTRIC

- Transmission Owners and distribution providers required to implement the UFLS schemes developed by Planning Coordinator and changes to those schemes within 18 months of notice
- Planning Coordinators required to provide specified information to SERC
- Generator Owners required to provide specified information to SERC to facilitate post-event analysis of frequency disturbances

- Clearly defines roles and responsibilities of responsible entities
 - Planning Coordinator responsible for developing UFLS schemes within its Planning Coordinator area
- Requires more granular studies of frequency response than continent-wide PRC-006-1 (three specified load/generation imbalance levels)
- Requires reporting to SERC to aid in post-event analysis

- Question correlation between Continent-wide and SERC standards and how the two standards work together
 - SERC standard provides regional detail for some of the NERC requirements
 - SERC standard is not stand-alone; works in conjunction with continent-wide UFLS standard

- No need for a regional standard continent-wide standard sufficient
 - Regional requirements provide regional consistency and coordination
 - Regional standard more stringent than continent-wide standard

Special Report: Spare Equipment Database System

Board of Trustees November 3, 2011 Dale Burmester, SEDTF Chair American Transmission Company

RELIABILITY | ACCOUNTABILITY

C Spare Equipment Database (SED) Overview

Spare Equipment Database

- Catalogs spare transformers
 - Voluntary system
- Catalogs long-lead time (6 months+)
 - Spare transmission transformers:
 - Spare Generator Step-Up (GSU) Transformers
- 24x7 Web-based operations
- Keeps entity information confidential

- Small event
 - Entity may need spare transformers
- High impact, Low frequency event (HILF)
 - Many entities may need spare transformers
- Could entity(ies) buy new transformers after event?
 - Yes, but manufacture time is six months+
 - Large events could extend time to one year+

- Allows entities to confidentially seek spares
 - Quicker to use someone else's than manufacturer
 - Faster restoration after event
- Provides for faster entity cooperation
 - Entities contact SED instead of everyone
- Balances risk mitigation and freedom
 - Voluntary participation
 - Double-blind requests
 - Entities not forced to commit spares

Participants

- Voluntary participation by up to:
 - ≈165 TO Entities
 - ≈670 GO Entities
 - ≈175 TO-GO Entities
- Minimal RE coordination
- Very low expected industry effort

Timeline

References

- Special Report: Spare Equipment Database System Report <u>http://www.nerc.com/docs/pc/sedtf/SEDTF_Special_Report_October_2011.pdf</u>
- DRAFT SED Mutual Confidentiality Agreement: <u>http://www.nerc.com/docs/pc/sedtf/Confidentiality_Agreement.pdf</u>
- SEDTF website:

http://www.nerc.com/filez/sedtf.html

NERC

Questions and Answers

RELIABILITY | ACCOUNTABILITY

Background Information

RELIABILITY | ACCOUNTABILITY

- Spare Equipment Database Task Force (SEDTF)
 - Planning Committee (PC) Initiated (2010)
- BPS spare equipment uniform approach
- Not intended to replace:
 - Existing utility spare programs
 - Spare pooling agreements
- September 14, 2011
 - Report approved by PC
 - Report endorsed by Operating Committee (OC) and Critical Infrastructure Protection Committee (CIPC)

SED Information

Contact Information to include:

- Name of TO or GO Functional Entity †
- Primary Contact Information **†**
- Secondary Contact Information
- SED Data Manager

Note: SED reporting is voluntary; however, if a spare is reported the information marked with an + symbol is deemed mandatory.

SED Asset Information to include:

- Transformer Identifier **†**
- Transformer Type **†**
- Spare's Physical Location
- Number of Phases **†**
- Rated Voltage High Voltage (HV) †
- Rated Voltage Low Voltage (LV) **†**
- Maximum MVA rating **†**
- Percent Impedance & MVA base
- Tertiary Winding Voltage and MVA
- Connection Type
- Spare Status Category
- Joint Ownership and Sharing Restrictions
- Open Comment Field
- Transformer Voltage Class

Field Information

- All fields confidential
 - Five contact information fields
 - Primary/secondary contact information
 - Fourteen asset information fields
 - Transformer configuration and rating information

- SED Mutual Confidentiality Agreement limits to:
 - Number of participating:
 - Entities by Regional Entity
 - o Transmission power transformer owners
 - GSU transformer owners
 - Transformers by high-side voltage
 - o Total MVA amount MVA by high-side voltage
 - Number of eligible:
 - Entities in the aggregate
 - Entities by Regional Entity

SHALE GAS It's about Energy Independence

Terry Boston President & CEO PJM Interconnection *CERTS* October 4, 2011

- Large, natural gas rich, shale formation spanning tens of million of acres
- Natural gas and hydrocarbons are trapped inside the solid shale

Source: Energy Information Administration based on data from various published studies. Updated: March 10, 2010

PJM and NYISO are Sitting Atop the Largest Shale Gas Discovery

Source: Energy Information Administration based on data from various published studies. Updated: March 10, 2010

Total Recoverable Reserves

U.S. proved reserves of natural gas at the end of 2009 were at their highest level since 1971

Source: Energy Information Administration

) Howard Gruenspecht, U.S. – Canada ECM, Dec 2 2010

Marcellus Shale Development

State-of-the-Art Technology - Proven Approach - Industry Expertise

How Do You "Drill Horizontal"

- Small bend in drilling motor assembly
- roughly 1-2°
- drills the curve over the course of 900'
- at a rate of 10° per 100' to achieve a 90° turn horizontally

It's not abrupt, rather a gradual sweeping motion.

Weatherford drilling technology

Fresh water aquifers - generally less than 500 foot depth →

The same several thousand of feet of impermeable rock that have kept oil and gas in deeper rocks for hundreds of millions of years - also prevent fracturing fluids from contacting fresh ground water aquifers

Marcellus Shale → (100 – 300 feet thick)

General Casing Design for a Marcellus Shale Well

More than three million pounds of steel and concrete isolate the wellbore. The Marcellus Shale is typically 6,500 feet below the Earth's surface and water table.

Water Protection

"The simple reality is that stimulation using this technique does not impact ground-water bearing zones."

– Robert W. Watson PhD PE is
Emeritus Associate Professor of
Petroleum and Natural Gas
Engineering and Environmental
Systems Engineering at The
Pennsylvania State University

Horizontal Drilling

Total surface disturbance during drilling, including access road, drilling pad and required pipeline infrastructure:

- Horizontal (yellow) develop 1,000 acres per pad with 1% surface disturbance
- Vertical (purple) on 1,000-foot spacing develop 23 acres per well with 19% total surface disturbance

- Natural gas infiltration in Dimock, PA 19 homes with contaminated water wells
- GasLand presented natural gas drilling as a danger to water and human health
- NY Times Article on Feb. 27, 2011
- EPA letter of Mar. 7, 2011 to PA DEP requesting immediate testing of drinking water for radium
- Since 1941 over 1.2 million wells drilled using hydraulic fracturing with only two known failures

Frac Mixture - What goes into the well?

Primarily fresh water, with some sand, and a very small proportion of common chemicals, representing 0.14% of the mix. The chemicals are in very small quantities, low concentrations, used in highly supervised environments, and injected through multiple layers of cemented steel casings

Marcellus Shale Conclusions

- 1. Environmental risks exist to shale gas drilling, but appear manageable
- 2. Everything is pointing to more gas-fired electric generation
- 3. Marcellus Shale gas will impact PJM and electricity markets in the years to come

- No N-1 criteria for pipeline network (ISO-New England 2004 had 7,000+ MW loss)
- Almost all generators are on non-firm NG contracts
- February 2 & 3, southwest rotating outages some NG compressor stations were not on critical electric service list
- Some gas compressing stations are on interruptible electricity contracts
- Gas line pressure can be an issue when starting several generators (TVA lost 2,600 MW 2003 △ Pressure > 100 PSI)
- Following PG&E explosion some pipelines have lowered maximum pressure by > 10%

- Local Distribution residential heating has first priority for gas (winter interruptions are more likely)
- Intrastate gathering pipelines (laterals) do not have the federal right of eminent domain
- Gas production and pipeline network is changing so fast that direction of flow is not known (Rockies Express 1323 Miles \$4.5 billion)
- Gas market day does not align with the electricity market day
- Some of the gas pipeline and NG market control centers are not staffed 24x7
- Gas storage is relatively small in geologic formations that are often far from load centers (East Coast and West Coast)
- DOE (CERTs) and FERC action needed on joint infrastructure planning and Gas/Electric market coordination